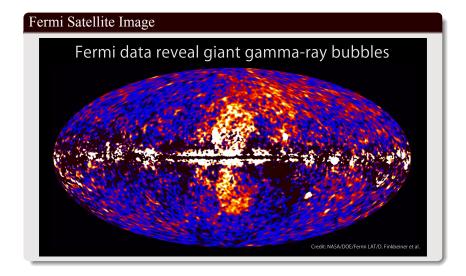
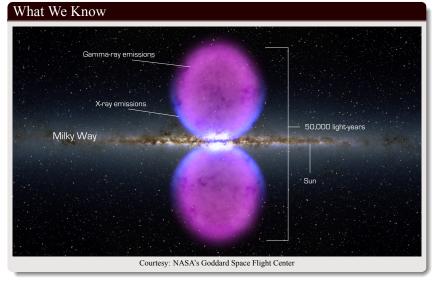
Numerical Simulations of Fermi Bubbles

Curtis Peterson Dr. Carl Gardner


March 31, 2018

Overview


- What Are Fermi Bubbles?
- 2 Our Model

Results

What Are Fermi Bubbles?

What Are Fermi Bubbles?

Curtis Peterson

Fundamental Postulates

- The Milky Way hosted an active galactic nucleus (AGN)
- Fermi bubbles were created from an AGN event

Our Model

Euler Gas Dynamical Equations

Conservation of Mass

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

Conservation of Momentum

$$\rho(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) + \nabla P = 0$$

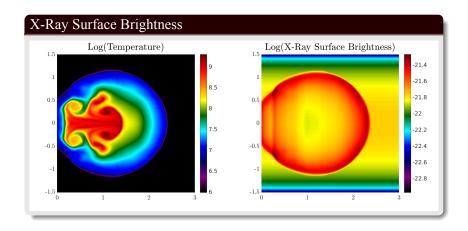
Conservation of Energy

$$\partial_t E + \nabla \cdot (\mathbf{u}(E+P)) = -n^2 \Lambda(T)$$

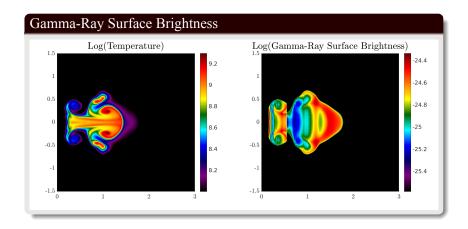
Our Model

The Algorithm

- Gas is assumed to be dilute and monatomic ($\gamma = 5/3$)
- We utilize a WENO (weighted essentially non-oscillatory) numerical scheme
- The cooling, $-n^2\Lambda$, models H₂ and the 10 most abundant elements


Our Model

Physical Parameters


Ambient	Bubble
$T_a = 10^6 \text{ K}$ $\rho_a = 1 \text{ H/cm}^3$	$T_b = 10^8 \text{ K}$ $ ho_b = 3 \cdot 10^{-5} \text{ H/cm}^3$ $v_b = 3 \cdot 10^4 \text{ m/s}$ $ au_b = 2.3 \text{ Myr}$

Results

Results

Results

Conclusions

Conclusions and Further Work

Success	Further Work
 Correct bubble topology Ambient and bubble temperatures Bulk cooling distribution 	 Obtain proper x-ray surface brightness Obtain proper gamma-ray surface brightness

Curtis Peterson

Thank You

- Dr. Carl Gardner
- NASA Space Grant Program
- School of Mathematical and Statistical Sciences